臺北市第 屆中小學科學展覽會 作品說明書

科 別:化學

組 別:國小組

作品名稱:口罩吸/散熱實驗-「罩」的住你

關 鍵 詞:新冠肺炎(COVID-19)、氣溶膠、平面式醫用口罩

摘要

目前「口罩」已經在我們的日常生活中,變成是很重要的隨身物品,所以我們對「平面式 醫用口罩」來進行吸熱與散熱等相關研究的探討。

因此本實驗由三個方向來探討,從蒐集資料中找出室內、室外「最佳口罩配戴顏色」:

- 一、太陽光下,利用不同顏色口罩研究吸熱與散熱的影響。
- 二、實驗箱電燈照射下,利用不同顏色口罩研究吸熱與散熱的影響。
- 三、黑暗無光的環境中,利用不同顏色口罩研究吸熱與散熱的影響。

我們認為這個世界上的疑問,很多都不是只有一個答案,我們需要探索各種可能性、大膽假設並保持好奇心。所以對於實驗的結果,我們會做出一份「問卷調查」,深入社區、詢問一般民眾對於口罩等相關問題……希望透過本研究對社會有實際收穫。

目錄

壹、研究動機	3
貳、研究目的	4
参、研究設備與器材	4
肆、研究過程及方法	5
第一節、研究流程	5
第二節、研究範圍	5
第三節、製作實驗器具	8
第四節、研究架構	9
第五節、實驗	10
伍、研究結果	14
第一節、太陽光下,口罩顏色吸熱、散熱結果檢視。	14
第二節、實驗箱內利用筒燈照射下,口罩顏色吸熱、散熱結果檢視。	17
第三節、室內黑暗無光的環境,口罩顏色吸熱、散熱結果檢視。	20
陸、討論	22
第一節、口罩吸熱、散熱實驗分析	23
第二節、口罩問卷調查之說明與分析	23
柒、結論	29
捌、參考文獻資料	29

壹、研究動機

自 2020 年以來,全球受新型冠状病毒肺炎(COVID-19)疫情的持續影響,已改變人們原有的生活樣貌。

一項使用高速視訊的實驗發現,當人們說出一個簡單的片語時,就會產生數百個 20 至 500 微米的液滴,但是當嘴巴被一塊濕毛巾蓋住時,幾乎所有液滴都會被擋住。另一項針對流 感或普通感冒患者的研究發現,戴「口罩」可以顯著減少 飛沫 [註 1] 和 氣溶膠 [註 2] 傳播這些呼吸道病毒的數量。 [病人護理專欄 (2020)]

因應新型冠状病毒肺炎(COVID-19)的出現及蔓延,口罩已經成為人們出入公共場所、工作及生活的常用防護用品。

但地球的大氣和海洋因溫室效應而造成溫度上升的全球暖化現象,讓每年越來越炎熱,高溫屢屢創下新紀錄。<u>台灣</u>夏季越來越長,在這麼熱的環境中,臉上還需配戴一層口罩,使得人們覺得悶熱難受。

我發現市面上,因為口罩需求變多,開始有不同顏色的口罩出現。所以我們有一個想法,就是研究哪一個口罩顏色,在光源下吸熱的情形,找出配戴時,最「不吸熱」、最「舒適」的口罩顏色;而在室內或陰涼處,找出「散熱」最快的口罩顏色,來達到「涼爽」的效果。希望藉由這個實驗,讓每個人在選購口罩時,有一個參考依據。

〔註 1〕:是指在口腔或鼻腔等地方出現的含水顆粒或小水滴、小液滴。人們在呼吸、說話、噴嚏、咳嗽或嘔吐時均會產生飛沫。

〔註 2〕:又稱為氣膠、煙霧質,一般是指固體或液體微粒穩定的懸浮於氣體中,是一種懸浮微粒。比方說當你在密閉空間抽菸,即使經過一段時間,也還是會聞到菸味。因此,香菸經過燃燒後所散發的煙霧,即是一種典型的氣溶膠。

氣溶膠的單一帶病毒量比飛沫傳染來的少,但是傳播病毒的距離比飛沫傳播還遠,尤其是在密 閉環境中(如電梯、郵輪),都是適合氣溶膠發展的。

貳、研究目的

- 一、了解口罩顏色對溫度吸熱、散熱的影響。
- 二、不同環境下,找出哪一個口罩顏色比較不吸熱。
- 三、不同環境下,找出哪一個口罩顏色比較容易散熱。
- 四、找到室外、室内最舒適的口罩配戴顏色。
- 五、透過研究結果,做出一份「口罩問卷調查表」,了解民眾想法。

参、研究設備與器材

肆、研究過程及方法

第一節、研究流程

- 一、搜尋相關資料並了解口罩種類、光與顏色的關係。
- 二、蒐集材料並加工成符合臉部孤度的實驗器具。
- 三、製作簡易的實驗器具,創造不同環境,來觀察口罩溫度的變化。
- 四、實驗分析與討論。
- 五、研究結論與建議。

第二節、研究範圍

本研究之物品「平面式醫用口罩」為台灣市面上容易購買且國人普遍配戴率最高的口罩。 「N95 口罩」不容易取得且非經常性配戴選項,另外「活性碳口罩」、「棉布口罩」、「海綿 口罩」、無法隔絕細菌病毒;所以不在此研究範圍。

一、口罩種類介紹:

平面式醫用口罩:可有效過濾細菌

對於 6μ m 以上微粒有 90%阻隔效果,因此可阻隔大部分飛沫傳染病菌。

N95 口罩:可有效過濾細菌

能過濾 95%以上的粉塵,包含飛沫跟一些有毒氣體等。因為 這種口罩密度非常高,佩戴後會感到難以呼吸。

棉布口罩:無法隔絕細菌

主要用於避免吸入灰塵或將飛沫噴出,可過濾大顆粒的物質,如灰塵等異物。

活性碳口罩:無法隔絕細菌

因為增加了活性碳層可吸附異味,比如說清潔劑、油漆、汽 機車排放的臭味等等,活性碳本身對於阻絕懸浮微粒及細菌 穿透效果並不佳,因此較不建議用於防疫。

但若是包裝上有寫明是「醫用」也是可用於防疫的。

海綿口罩:無法隔絕細菌

質地較柔軟舒適,透氣性也比較好,但主要用於過濾花粉、 塵埃、霧霾,對於病毒的防疫能力不佳。

[Heho 健康 (2020)]

二、光與顏色的關係:

暖色與冷色使人從心理上感覺溫暖或者寒冷。實際上,有些顏色可以反射光線而不吸收熱量,使物體實際溫度比較低,而有些顏色吸收光線的同時還會吸收熱量,使物體實際溫度比較高。白色、黃色和淺藍等明亮的顏色可以反射光線,但卻不容易吸收熱量,而黑色和紫紅色等顏色容易吸收光線和熱量。〔**色彩的學問** (2021)〕

自然課程曾介紹過,用放大鏡聚焦太陽光線把紙點燃。黑色的紙非常容易點燃,而白色的紙則需要一段時間。這是由於黑色更容易吸收光線和熱量、溫度也能夠更快上升到燃點的緣

故。

利用此原理,印證口罩顏色是否符合淺色不容易吸熱、深色容易吸熱現象。

第三節、製作實驗器具

一、蒐集材料:

- 1.先透過身邊的親朋好友,募集到各種顏色的【平面式醫用口罩】(以下簡稱口罩)。
- 2.使用紙杯當本體:因為考量到環保,而且紙杯有弧度,類似臉部戴口罩的樣子。
- 3.實驗中的紙杯,尺寸大小必須相同。
- 4.完成口罩在紙杯上,掛置的高度。

二、完成口罩測試支架

圖1 在紙杯5.5公 分處,做記號

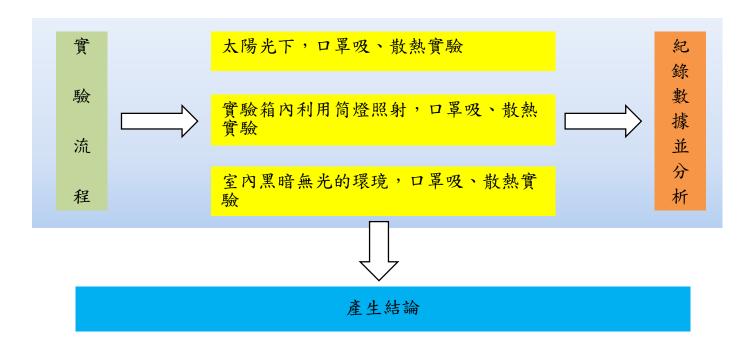
圖2 將竹籤黏在膠 帶上,並剪下

圖3 將竹籤黏在紙 杯做記號的位置

圖4 將口罩繩交叉 套在竹籤上

圖5 調整口罩與杯 口貼齊

圖6 將口罩2側,用訂書 機釘好並貼合


圖 7 完成口罩測試支架

完成實驗紙箱:

紙箱外圍用封箱膠帶黏好,製造一個實驗暗房空間,使用筒燈做為固定光源,量測 30 公分 〔 燈泡至紙箱底部 〕 並貼上記號,做為口罩固定放置位置。

第四節、研究架構

第五節、實驗

一、實驗一:太陽光下,測試口罩顏色吸熱情形。

因為要測量吸熱的溫度變化,所以必須在有陽光的地方進行測量,可是疫情的關係,導致無法去人多的公園進行實驗,因此決定在自家大樓的戶外公共區域,進行量測。

1. 檢討一:

第一次實驗時,發現口罩曝曬在太陽光下,溫度數據並沒有在特定的時間內,持續升高; 所以決定重新散熱再重做,如此反覆數次,最終還是沒有得到想像中的結果,數據無參考 價值。

2. 檢討二:

為了找到問題,決定改變實驗地點,在家中的後陽台進行實驗,並隨著太陽照射方向,改變口罩的放置方向,發現吸熱溫度有隨著曝曬時間而升高。因為是在下午西曬時間實驗,最後一次的數據,隨著太陽下山,光線減弱,並未得到完整的結果。

透過這些失敗的過程,終於讓我們發現問題與最佳的實驗方法。我們必須在實驗前,先量好各顏色口罩起始溫度,再記錄後續升高溫度,才能顯示出差異、比較數值;曝曬位置也很重要,必需是一個完全無遮避、無陰影空間,陽光能充足照射到的地方,最好是晴朗無雲的炎熱天氣。

圖1 在陰涼處先量 好起始溫度

圖2準備好實驗器 材

圖3 在陽光充足的 地方,擺放口罩。

圖4 記錄當天的溫 度與濕度

圖5 開始測量各種顏 色的吸熱變化

圖6 記錄測量後的 溫度

二、實驗二:太陽光下,測試口罩顏色散熱情形。

我們先讓口罩在陽光底下曝曬一段時間,再把它放到陰涼處的地方,觀察口罩的降溫情形。

1. 檢討一:

剛開始測試時,我們直接把它放在陰涼處地板,結果發現不管測量幾次,溫度的變化都不明顯,所以我們努力想出問題點、查詢網路上的相關探討……了解到房屋是水泥建造,雖然耐震,但也超吸熱,因為接觸地面,容易有熱傳導,干擾散熱數值,所以我們改變放置地方,試著將它擺放到陰涼的窗台上,不要接觸到地板,沒想到溫度開始出現降溫的變化。

2. 檢討二:

需要一個陽光強烈的天氣,因為如果在陽光不充足或陰天的情形下,沒有讓口罩完全吸收 到光線與熱量,也會造成口罩後續降溫效果不明顯,容易影響實驗結果。

圖1先讓口罩在陽光 下充份吸熱

圖2 先測量陰涼處 溫度

圖3 將曝曬後的口 罩放至窗台

圖4 觀察散熱狀況

圖5 並寫下觀察記錄

三、實驗三:實驗箱內利用筒燈照射,測試口罩顏色吸熱情形。

圖1 以紙箱做為 實驗暗房

圖2 將紙杯固定 放置位置量測好 並貼上記號

圖3 記錄當天房 間溫度與濕度。

圖4 將各顏色口罩逐 一測量吸熱變化

圖5 記錄測量後的溫 度

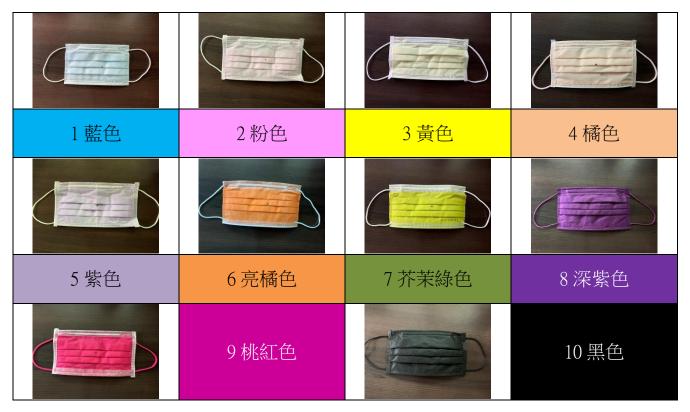
四、實驗四:實驗箱內利用筒燈照射後,測試各種口罩顏色散熱情形。

圖1 記錄當天房間 溫度與濕度。

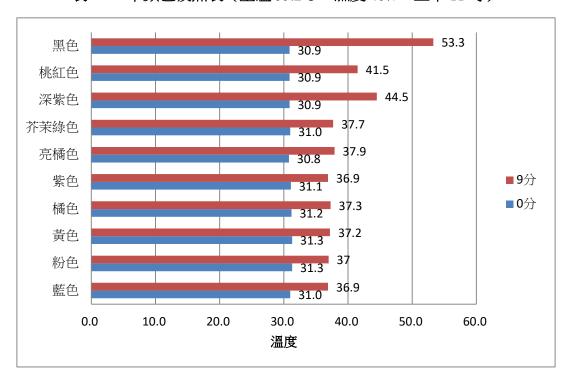
圖2 記錄吸熱後的 口罩溫度

圖3 放置房間陰涼 處散熱

圖4 將各顏色口罩 逐一測量散熱變化


圖5 記錄測量後的 溫度

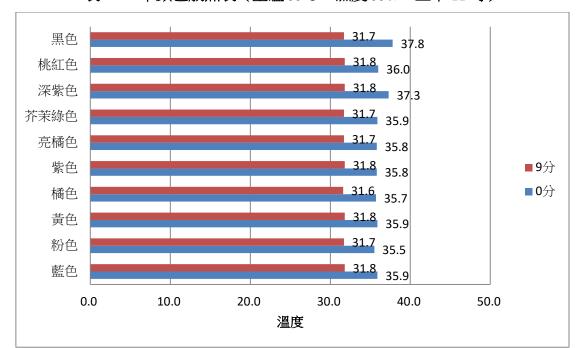
五、實驗五:室內黑暗無光的環境,測試口罩顏色吸、散熱實驗。


在房間內,拉上窗簾、關上電燈,創造一個黑暗無光的環境,觀察各顏色口罩吸熱、散熱情形、並記錄溫度。

伍、研究結果

第一節、太陽光下,口罩顏色吸熱、散熱結果檢視。

表一 □罩顏色吸熱表(室溫 35.2℃、濕度 48% 上午 11 時)


吸熱時間 顔色	0分	3分	6分	9分	溫差
藍色	31.0	35.5	36.5	36.9	5.9℃
粉色	31.3	35.5	36.3	37.0	5.7℃
黄色	31.3	35.6	36.3	37.2	5.9℃
橘色	31.2	35.7	36.3	37.3	6.1℃
紫色	31.1	35.6	36.2	36.9	5.8°C
亮橘色	30.8	36.1	36.9	37.9	7.1℃
芥茉綠色	31.0	36.7	37.0	37.7	6.7℃
深紫色	30.9	38.6	39.0	44.5	13.6°C
桃紅色	30.9	37.3	38.6	41.5	10.6℃
黑色	30.9	45.3	47.9	53.3	22.4℃

從表格中可得知,吸熱溫度變化由大到小排序為:

22.4℃(黑色)>13.6℃(深紫色)>10.6℃(桃紅色)>7.1℃(亮橘色)>6.7℃(芥茉緑色)

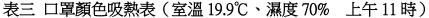
>6.1℃(橘色)>5.9℃(藍色、黄色)>5.8℃(紫色)>5.7℃(粉色)。

- 一、 從測量數據中,得知各顏色於太陽底下吸熱9分鐘前後,其溫度變化明顯有差異。
- 二、 從橫條圖中,發現吸熱 0 分鐘 \sim 9 分鐘過程溫差最大的是黑色,從原先的 30.9 $^{\circ}$ 上升 到 53.3 $^{\circ}$ 、總上升溫度為 22.4 $^{\circ}$ 。
- 三、 從橫條圖中,發現吸熱 0 分鐘~9 分鐘過程溫差最小的是粉色,從原先的 31.3℃上升 到 37.0℃,總上升溫度為 5.7℃。

表二 口罩顏色散熱表(室溫33℃、濕度53% 上午11時)

散熱時間 顔色	0分	3分	6分	9分	溫差
藍色	35.9	32.1	31.8	31.8	4.1℃
粉色	35.5	32.2	31.9	31.7	3.8℃
黄色	35.9	32.2	31.9	31.8	4.1℃
橘色	35.7	32.0	31.7	31.6	4.1℃
紫色	35.8	32.2	31.9	31.8	4.0°C
亮橘色	35.8	32.0	31.8	31.7	4.1℃
芥茉綠色	35.9	32.2	31.7	31.7	4.2°C
深紫色	37.3	32.1	31.9	31.8	5.5℃
桃紅色	36.0	32.2	31.8	31.8	4.2°C
黑色	37.8	32.1	31.8	31.7	6.1℃

從表格中可得知,散熱變化由大到小排序為:

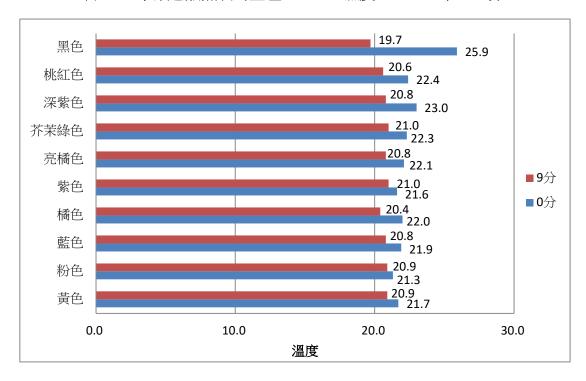

6.1°C(黑色) > 5.5°C(深紫色) > 4.2°C(桃紅色、芥茉緑色) > 4.1°C(亮橘色、橘色、藍色、黄色) > 4.0°C(紫色) > 3.8°C(粉色) 。

一、從測量數據中,得知各顏色於太陽照射後,放置陰涼處散熱 9 分鐘前後,其溫度變化明

顯有差異。

- 二、 從橫條圖中,發現散熱 0 分鐘~9 分鐘過程溫差最大的是黑色,從原先的 37.8℃下降到 31.7℃,總下降溫度為 6.1℃。
- 三、 從橫條圖中,發現散熱 0 分鐘~9 分鐘過程溫差最小的粉色,從原先的 35.5℃下降 到 31.7 $\,$ ℃,總下降溫度為 $\,$ 3.8℃。

第二節、實驗箱內利用筒燈照射下,口罩顏色吸熱、散熱結果檢視。


吸熱時間 顏色	0分	3分	6分	9分	溫差
黄色	21.1	21.5	21.6	21.8	0.7℃
粉色	21.1	21.3	21.3	21.5	0.4°C
藍色	21.1	21.7	21.8	21.9	0.8°C
橘色	21.0	21.6	21.9	22.0	1.0°C
紫色	21.0	21.1	21.2	21.6	0.6°C
亮橘色	20.8	21.6	21.8	22.1	1.3°C
芥茉綠色	21.1	21.5	21.8	22.3	1.2°C
深紫色	21.4	22.0	22.7	23.0	1.6°C
桃紅色	20.9	21.7	21.9	22.4	1.5°C
黑色	21.3	22.2	23.4	25.9	4.6°C

從表格中可得知,吸熱溫度變化由大到小排序為:

4.6°C(黑色) > 1.6°C(深紫色) > 1.5°C(桃紅色) > 1.3°C(亮橘色) > 1.2°C(芥茉緑色) > 1.0°C(橘色) > 0.8°C(藍色) > 0.7°C(黄色) > 0.6°C(紫色) > 0.4°C(粉色) 。

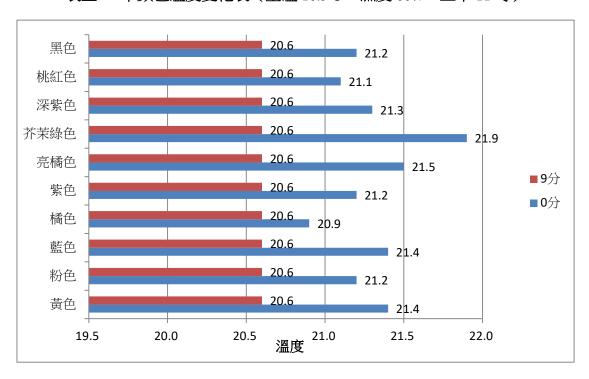
- 一、 從測量數據中,得知各顏色於實驗紙箱內,利用筒燈照射,吸熱 9 分前後,其溫度變化 有些微差異。
- 二、 從橫條圖中,發現吸熱 0 分鐘~9 分鐘過程溫差最大的是黑色,從原先的 21.3 $^{\circ}$ 上升 到 25.6 $^{\circ}$ 、總上升溫度為 4.6 $^{\circ}$ 。
- 三、 從橫條圖中,發現吸熱 0 分鐘~9 分鐘過程溫差最小的粉色,從原先的 21.1 $^{\circ}$ 上升 到 21.5 $^{\circ}$ 、總上升溫度為 0.4 $^{\circ}$ 。

表四 口罩顏色散熱表(室溫 19.9℃、濕度 70% 上午 11 時)

散熱時間 顏色	0分	3分	6分	9分	溫差
黄色	21.7	21.5	21.3	20.9	0.8°C
粉色	21.3	21.2	21.1	20.9	0.4°C
藍色	21.9	21.4	21.1	20.8	1.1℃
橘色	22.0	21.8	21.1	20.4	1.6℃
紫色	21.6	21.2	21.2	21.0	0.6°C
亮橘色	22.1	21.3	21.0	20.8	1.3℃
芥茉綠色	22.3	21.7	21.3	21.0	1.3℃
深紫色	23.0	21.4	21.2	20.8	2.2℃
桃紅色	22.4	21.6	21.2	20.6	1.8℃
黑色	25.9	22.5	20.8	19.7	6.2°C

從表格中可得知,散熱溫度變化由大到小排序為:

6.2°C(黑色) > 2.2°C(深紫色) > 1.8°C(桃紅色) > 1.6°C(橘色) > 1.3°C(亮橘色、芥茉緑色) > 1.1°C(藍色) > 0.8°C(黄色) > 0.6°C(紫色) > 0.4°C(粉色) 。


一、 從測量數據中,得知各顏色於筒燈照射後,放置陰涼處散熱 9 分前後,其溫度變化有些

微差異。

- 二、從橫條圖中,發現吸熱 0 分鐘~9 分鐘過程溫差最大的是黑色,從原先的 25.9℃下降 到 19.7℃,總下降溫度為 6.2℃。
- 三、 從橫條圖中,發現吸熱 0 分鐘~9 分鐘過程溫差最小的粉色,從原先的 21.3℃下降 到 20.9 \mathbb{C} ,總下降溫度為 $0.4\mathbb{C}$ 。

第三節、室內黑暗無光的環境,口罩顏色吸熱、散熱結果檢視。

表五 □罩顏色溫度變化表(室溫 18.3℃、濕度 66% 上午 11 時)



溫度變化 顏色	0分	3分	6分	9分
黄色	21.4	20.9	20.7	20.6
粉色	21.2	20.6	20.7	20.6
藍色	21.4	20.9	20.7	20.6
橘色	20.9	20.7	20.6	20.6
紫色	21.2	21.0	20.6	20.6
亮橘色	21.5	21.3	20.7	20.6
芥茉綠色	21.9	21.0	20.7	20.6
深紫色	21.3	20.9	20.6	20.6
桃紅色	21.1	21.0	20.7	20.6
黑色	21.2	20.6	20.6	20.6

- 一、從測量數據中,得知各顏色於黑暗無光環境,放置9分鐘前後,其溫度變化極微小差異。
- 二、從橫條圖中,發現在各時段裏,各顏色口罩溫度緩慢降溫,在9分鐘後,溫度變化都一樣。
- 三、所以在無光線情況中,各顏色沒有發揮吸收熱量作用,緩慢散熱後情形都一樣,沒有差異。

〔實驗過程部份照片〕

陸、討論

吸熱,是指物體本身的溫度升高,吸收外界的熱量;散熱,是指物體本身的溫度降低,向 外界放出熱量。 當光照到一個表面時,光會根據表面的顏色被反射或吸收。白色表面能反射彩色光的整個光譜,而黑色表面不反射任何東西,而是吸收光。所以當光照落在有顏色的物體上時,一部分的光被反射,另一部分會被吸收。〔Goldwell〕

所以不同的顏色即使處在同一位置,帶給每個人的生理、心理感受也是不同的。

第一節、口罩吸熱、散熱實驗分析

- 一、此次的研究實驗,使我們知道"不同顏色和吸熱、散熱"有關,在太陽光照射下,前後溫差有很明顯的差異;在室內實驗箱中使用筒光照射下,因為光源較弱,前後溫差些微明顯,還是有差異;在室內黑暗無光下,因為無光、無吸收熱量,最後表現結果沒有差異。
- 二、在第一、二個實驗中,分別利用太陽光、及筒燈照射,我們發現有趣的順序,顏色越淺 色時會產生反射、隔絕熱能,所以較不容易吸熱,可以比較出類似順序為 **粉色<紫色< 黃色<藍色<橘色**。

而顏色越暗時,容易吸收到所有光源的熱量,一下子就熱呼呼,可以比較出類似順序為 黑色>深紫色>桃紅色>亮橘色>芥茉綠色。

三、在第一、二個實驗中,分別利用太陽光、及筒燈照射,拿到陰涼處進行散熱,我們可以 發現越深色,雖然吸熱快,但是放熱也快,放到陰暗的地方,一下子就變涼快了,可以 比較出類似順序 **黑色>深紫色>桃紅色>亮橘色>芥茉綠色**,有較快的散熱效果。 淺色因為沒有吸入較多的熱量,相對也較慢散熱,可以比較出類似順序為 粉色<紫色< 黃色<藍色<橘色。

第二節、口罩問卷調查之說明與分析

一、綜合以上實驗結果,讓我們充滿興趣與好奇,我們很想進一步了解,民眾如果得知「口 單顏色會影響臉部配戴的舒適度」,會有怎樣的想法與選擇.....。

所以我們決定設計一份「口罩問卷調查」表,調查對象為各行各業、路人……進行隨機 取樣 30 份,落實、驗證實驗精神,找出答案之外,也希望透過本研究對於社會能有貢獻 及幫助。 二、 但是我們在實行問卷調查的過程中,時常會遇到被拒絕填寫的情形,因為民眾反映個人資料欄位過於詳細敍述,所以再次修正問卷調查內容,採取不填寫個人資料、使用側面拍照記錄為 佐證,並且都有得到當事人同意願意公開照片。

	口罩問卷調査						
1.	年齡:						
	□18歳以下 □18-25 歳	歲 26-40	歲 41-60 歲	60 歲以上			
2.	口罩購買種類:	_	<u></u>				
	平面式醫用口罩	№95 □罩	棉布口罩	活性碳口罩 海綿			
	口罩						
3.	□罩替換率:						
	每天	1 週1 刻	周以上				
4.	□罩購買管道:						
	網路藥局[] 軍專賣店	其他:				
5.	口罩對您而言的意義:(可	複選)					
	配合法規而配戴	防止疫情傳染	と展現個人特	持色 <u></u> 其他:			
6.	偏好購買的口罩顏色:(話	f勾選2種)					
		业人	世名	 			
	藍色						
			P. Simil	Second Jan			
	紫色	亮橘色	芥茉綠色	深紫色			
		_					
				黑色			
7.	若實驗研究結果顯示,配	戴 粉色口罩	,會比上述顏色來	的更舒適、較不悶熱,			
	是否會列入購買考量:						
	是	 否,為什	· 一麼:				

口罩問卷調查統計表 (※紅色數字為統計結果)

1. 年龄:

1 18 歲以下 8 18-25 歲 10 26-40 歲 9 41-60 歲 2 60 歲以上

2. 口罩購買種類:

28 平面式醫用口罩 0 N95 口罩 1 棉布口罩 1 活性碳口罩 0 海綿口罩

3. 口罩替換率:

19 每天 112-3 天 01 週 01 週以上

4. 口罩購買管道:

12 網路 20 藥局 1 口罩專賣店 3 其他: $\frac{1}{1}$ 其他: $\frac{1}{1}$ 其人,家人購買、子女提供、團購

5. 口罩對您而言的意義:(可複選)

22 配合法規而配戴 29 防止疫情傳染 5 展現個人特色 0 其他:

6. 偏好購買的口罩顏色:(請勾選2種)

7. 若實驗研究結果顯示,配戴 粉色口罩,會比上述顏色來的 <u>更舒適、較不悶熱</u>, 是否會列入購買考量:

21 是 9 否, 為什麼:

5 不愛粉色、2 只用藍黑、

1只用黑色、1各人喜好。

綜合以上口罩問卷結果顯示 (※ 紅色數字為統計結果):

- 1. **問卷年齡:**平均 18~60 歲居多。
- 2. **民眾口罩配戴種類:**選擇<u>「平面式醫用口罩」</u>佔絕大多數。其中棉布口罩使用者,我因為好奇而詢問,得知是在「平面式醫用口罩」上,再多加「棉布口罩」在最外層,多一道防護更安心;而「活性碳口罩」使用者,是之前購置有剩餘,所以暫且使用。
- 3. **口罩替換率:**每天替換者居多;2-3天替換者,詢問並了解,調查者覺得並不是整天待在 戶外、偶爾短暫外出、無與人交談或節省口罩使用。
- 4. **口罩購買管道:藥局、網路**購買居多,我覺得調查結果,很符合現在的生活型態,藥局 設置普遍可見、而且能提供購買的口罩選擇越來越多;另外選擇網路購買者,他們覺得 只要動動手指頭透過手機或電腦下訂,就能配送到指定地點,能節省時間又便利。
- 5. **口罩配戴的意義:**政府密集的宣導,發揮良好的作用。從原先的<u>「配合法規而配戴」</u>,到 大家對於防疫觀念越來越清楚、正確,了解到保護自己也能保護他人,好好配戴口罩就 能「**防止疫情傳染**」。
 - 再則,少數人覺得口罩除了不傳播疫情之外,也能透過顏色來展現<u>「個人特色」</u>,增加好心情。
- 6. **偏好口罩顏色:**大多數人還是喜歡目前最普遍可見的**藍色口罩**,其次是**黑色口罩**,詢問 黑色口罩使用者,部份人覺得比較耐髒、少數受到電視藝人影響,覺得配戴黑色口罩很 流行,再來才是粉色>紫色口罩,只有極少數人會選擇亮橘色、深紫色、桃紅色或芥茉 綠色口罩。
- 7. **購買考量:**研究結果顯示,有 70%的一般民眾得知粉色口罩在配戴時,能讓臉部更舒適、 比較不悶熱的情況下,**願意購買並優先選擇使用粉色口罩**。另外 30%的一般民眾因為對 顏色有個人偏好,不考慮使用。

而我發現一個很有趣的現象,就是通常不考慮使用粉色口罩的一般民眾,佔大部份是 18-25 歲的年輕人。

柒、結論

- 一、吸熱實驗證實了,深色比淺色更容易吸熱,淺色因為會反射陽光、光源,相對比較不會 吸收熱能,所以夏天很熱,就配戴粉色口罩,會比較涼快一些;而冬天很冷,可以配戴 黑色口罩,因為它容易吸熱的本性,所以會比較保暖。
- 二、散熱實驗證實了,深色雖然吸熱快,但是散熱也快。所以在室內時,因為陽光少或照射不到的因素,黑色不會發揮吸熱的特性,只會發揮它散熱快的本領,所以能快速的排走皮膚表面的熱度;若要將臉部所散發出來的熱量,透過口罩散發出去,深色口罩會比淺色口罩來的較快,所以在室內時,可以配戴黑色口罩來達到涼爽效果。
- 三、這次實驗,我們發現溫度受太陽忽隱忽現、或環境變化影響,過程中數值記錄也會忽高忽低。透過增加實驗次數,並將全部數據加總起來,準確性能夠有效提升,亦有助於選擇最穩定的記錄。
- 四、口罩問卷調查中,大多數人得知若能更舒適、不悶熱,願意選擇粉色口罩配戴,所以我們覺得這樣的實驗結果,也許也可以應用在機車騎士的安全帽選擇上,當做一個使用參考。利用粉色能反射光線,較不吸收熱量,可以有效避免讓頭部溫度不至於太高,防止中暑。
- 五、本研究選擇口罩相關實驗,因為沒有太多的文獻資料可供參考,過程中有些辛苦。經由 我們努力的思考、大膽的假設並且一再修正,讓我們學習到「科學就是求實、創新」,持 之以恆並反覆的驗證,就能得到真知識。

捌、參考文獻資料

- 一、日綜實驗:黑色 VS 白色口罩哪個更吸熱? https://news.gamme.com.tw/1691603
- 二、遮陽與顏色 http://science.hsjh.chc.edu.tw
- 三、不同顏色紙的冷熱 http://www.ikes.tp.edu.tw